Water Treatment Case Studies

Case Study: Water Treatment and Filtration

New Technology Applied:

  • Wonderware System Platform 2017 R2
  • ControlLogix Redundant PLC System

Project Description/Development:
Client was in need of a Redundant PLC system that incorporated over 200 I/O points for the water Treatment and filtration industry.  All controls needed to be fail-safe.  All motors/pumps were to be integrated over an Ethernet network from an MCC at a remote location.  End user required a very detailed and specific programming method that also required integration with the Plant’s System Platform system.  Historization and specific graphic objects needed to be utilized and accessible at different security access levels throughout the plant. 

Project Outcome/Solution:
Multiple remote ControlLogix PLC racks were implemented with redundant ControlLogix processors.  A device level ring Ethernet network was implemented to eliminate possible communication loss.  All data was recorded and historized through the Wonderware System Platform software.  The control of the system was implemented using a Wonderware Premier Series Industrial computer that was configured on an independent network to reduce Ethernet data transfer speeds.  All motors were controlled via Ethernet with User Defined Function Blocks located on a separate network to allow for better control of the data.  All data traffic was networked through managed switches to prioritize data networking traffic.

Case Study: Chlorine Sanitation System

New Technology Applied:

  • Compact Logix PLC
  • Panelview Plus 7 HMI

Project Description/Development:
Prototype development of a new sanitation system to allow for full customization and configuration of the system via the HMI.  System was to control pump speed and valving configuration to incorporate chemicals to facilitate proper sanitation of water to meet specifications.  Calibration of transmitters and speed controllers to regulate proper flow control to allow constant generation of sanitized water.   

Project Outcome/Solution:
Collaborated with client to develop a fully function system to be sold as a standard product.  System was developed to customized each system via the HMI depending on the various options that were purchased with the product.  Various levels of security were put in place to protect the calibration settings and configuration set points.  Trending and data logging were added to record system .

Expansion:
System has since been implemented across other platforms including Siemens TIA portal via Siemens S7-1200 and Comfort Panel HMI’s.  Future systems to include Modicon PLC’s and HMI systems.

Case Study 105: Polymer Systems Industry Sector: Water Treatment • Polymer Process Machine

New Technology Applied:

  • Allen Bradley ControlLogix
  • Allen Bradley PanelView Plus HMI

Project Description:
Staneco Corporation designed a control system for polymer mixing machines. Polymer is used in the process to remove particles from both drinking water and treated sewage. The system involved monitoring the level of a polymer tank. When the level dropped to a pre-determined point, a new batch of polymer was added. First water was added to a mixing tank to a pre-determined level. When the tank reached this level, a polymer powder was weighed and added. As the powder was added, a mixer started blending the water and polymer. The pre-determined polymer concentration was calculated. The mixture was then sent to a second mixing tank where more water was added to get the polymer concentration down to the required level. Finally the polymer was pumped into the final polymer tank. The system was set up to operate in two modes, demand batching and bulk batching; each having different control characteristics.

Project Outcome:
System allowed for customization of recipes enabling quality control of the product. HMI alarm indication reduced operator error and increased the machine life cycle.

Environmental Case Studies

Case Study 118: Scrubbers Industry Sector: Environmental • Stack Emission Control System

Technology Replaced:

  • Square D 784 PLC System

New Technology Applied:

  • Modicon Quantum Redundant System

Project Description:
Staneco Corporation replaced outdated PLCs with new Redundant Modicon Quantum PLCs for air pollution and dust collection equipment at a power plant. The system was programmed utilizing existing loop drawings along with additional input from client’s engineering staff. The hardware was replaced in a manner which allowed for minimum down time. The existing field wiring was unchanged. Because the new PLC equipment was so much smaller than the original, Staneco came up with a design that added terminal blocks in the same physical locations as the original I/O. These terminals were located on sub-panels along with the new PLC hardware. The terminals were wired to the new PLC I/O. The entire assembly was installed on the existing panel. When the old I/O was removed, the original field wiring was landed back on the new terminals without disturbing the field wiring. This allowed the change to be made in the short outage window.

Project Outcome:
Since the old PLC hardware was obsolete and replacement hardware becoming harder to obtain upgrading the system was essential to the plant’s operation. The new system provided additional fault monitoring and greater data collection making the process easier to troubleshoot and monitor.

Case Study 130: Gas Recovery System Industry Sector: Environmental • Gas Recovery System

New Technology Applied:

  • Allen Bradley SLC 500
  • Allen Bradley MicroLogix 1500
  • Allen Bradley PanelView Plus
  • Rockwell RSView32 SCADA

Project Description:
Staneco Corporation designed a control system that purified contaminated ground water. The system consisted of three wells. Water was pumped from two of the wells.  Flow from the wells was monitored.  The flow rate could be regulated either by fixed flow rate or by monitoring the level of the wells and adjusting the flow to keep the level of the wells at a fixed setpoint. The operator selected the desired method of control. A chemical was added to the water and it was pumped back into a third well. The flow rate of the chemical was paced to the flow rate of the water.  Data was collected which included well levels, water flow, and chemical flow. The data was stored in Excel format.

Case Study 102: Stack Emission Control Industry Sector: Environmental • Regenerative Thermal Oxidizers

New Technology Applied:

  • Allen Bradley CompactLogix
  • Allen Bradley PanelView Plus HMI

Project Description:
Staneco designed controls for two thermal oxidizers used at a corn-to-ethanol plant to remove organic chemicals from discharged air. The oxidizers consisted of multiple gas burners which heated combustion chambers containing ceramic pellets. When the process gas is passed through the pellets, the organic chemicals are oxidized, neutralizing them. In order to prevent overheating of the ceramic pellets, a series of dampers were switched based on either time or chamber temperature. As the chambers were switched, some gas escaped unprocessed. To remove these gases, a purge operation was included to re-circulate the untreated gasses. The motors were controlled over Devicenet which included two VFDs. Temperatures and operation of the valves are monitored and alarmed. Data was made available to the plant DCS system.

Project Outcome:
System met and exceeded the required emission acceptable limits. The process also helped minimize fuel consumption.

Case Study 103: Scarfing Industry Sector: Environmental • Scarfing / Crusher Conveyor System

Technology Replaced:

  • Antiquated Relay Panel

New Technology Applied:

  • Allen Bradley MicroLogix
  • Allen Bradley Component HMI

Project Description:
Staneco Corporation designed a crusher conveyor control system to replace an existing relay panel. The system consisted of conveying material through a series of conveyors and hydraulic crushers. Crushed material was then conveyed and separated by size and conveyed to different piles. Speed of the conveyor was controlled by VFD based on operator input. Safety interlocks were applied to prevent any possibility of injury. The system was able to operate in automatic, remote and manual modes. HMI displayed alarm conditions and location of fault events.

Project Outcome:
The combination of the PLC and HMI provided a more modernized system which increased throughput and minimized downtime while meeting all safety requirements.

Case Study 104: Air Pollution Controls Industry Sector: Environmental • Regenerative Thermal Oxidizers

New Technology Applied:

  • Siemens Simatic S7-300
  • Siemens Simatic HMI MP 277

Project Description:
Staneco designed controls for two thermal oxidizers used for treatment and abatement of malodorous emissions at a waste treatment facility. The oxidizers consisted of multiple gas burners which heated combustion chambers containing ceramic pellets. When the process gas was passed through the pellets, the organic chemicals are oxidized, neutralizing them. In order to prevent overheating of the ceramic pellets, a series of dampers were switched based on either time or chamber temperature. As the chambers were switched, some gas escaped unprocessed. To remove these gases, a purge operation was included which re-circulated the untreated gasses. Temperatures and operation of the valves was monitored and alarmed.

Project Outcome:
Malodorous emissions were eliminated meeting local requirements.


Case Study 109: Air Pollution Controls Industry Sector: Environmental • Carbon Dioxide Recovery System

New Technology Applied:

  • Siemens PCS7

Project Description:

Staneco Corporation designed an experimental control system for a government study to remove carbon dioxide from a coal fired power plant stack exhaust. The system controlled the flow and temperature of amines to absorb and release the carbon dioxide.

Project Outcome:

Various types of amines were tested to find the most effective.

Process Control Case Studies

Case Study 105: Polymer Process Industry Sector: Process Control • Polymer Process Machine

New Technology Applied:

  • Allen Bradley ControlLogix
  • Allen Bradley PanelView Plus HMI

Project Description:
Staneco Corporation designed a control system for polymer mixing machines. Polymer is used in the process to remove particles from both drinking water and treated sewage. The system involved monitoring the level of a polymer tank. When the level dropped to a pre-determined point, a new batch of polymer was added. First water was added to a mixing tank to a pre-determined level. When the tank reached this level, a polymer powder was weighed and added. As the powder was added, a mixer started blending the water and polymer. The pre-determined polymer concentration was calculated. The mixture was then sent to a second mixing tank where more water was added to get the polymer concentration down to the required level. Finally the polymer was pumped into the final polymer tank. The system was set up to operate in two modes, demand batching and bulk batching; each having different control characteristics.

Project Outcome:
System allowed for customization of recipes enabling quality control of the product. HMI alarm indication reduced operator error and increased the machine life cycle.

Case Study 114: Batching
Industry Sector: Process Control • PVC Compounder System

Technology Replaced:

  • Relay Panel

New Technology Applied:

  • Allen Bradley SLC 500
  • Allen Bradley PanelView

Project Description:
Staneco Corporation designed a control system to produce batches of compounded PVC. The system automatically weighed out batches of PVC resin and calcium carbonate. The material was conveyed with a pneumatic conveying system into a compounder drum. The drum was rotated and heated with the temperature being monitored. A liquid stabilizer and additional chemicals were automatically added to the mix when the temperature reached predetermined temperatures. At the end of the cycle, the material was unloaded into a cooling drum until it was cool enough to be transported into a storage silo. The material was then automatically distributed to several lines of extruders based on demand from the extruders.

Project Outcome:
The new control system eliminated repeat failures which were greatly impacting production and quality.

Burner Management Case Studies

Case Study 122: LNG Industry Sector: Burner Management • Vaporizer Control System

Process or Machine Automated:

  • Submerged Combustion Vaporizer Control Systems

New Technology Applied:

  • GE Fanuc 90-30 series PLC
  • GE QuickPanel HMI
  • Wonderware InTouch SCADA

Project Description:
Staneco Corporation designed controls for multiple liquefied natural gas vaporizers for use in a re-gasification process at a peak shaving facility. Each vaporizer contained a large burner that heated a water bath for the evaporation process. Two PLC systems were utilized for control of each vaporizer; one system for burner management as required per the NFPA and one system for other process controls. All units had automatic ignition and bath temperature control. In addition to the gas control required to operate under normal conditions, interlocks were added to safely handle alarm conditions. Each control system provided feedback to the plant DCS.

Project Outcome:
The addition of these peak shaving units enabled the plant to meet the critical requirements of peak consumption periods. Operators praised the ease of use provided by the control system and the ability to make adjustments to ensure optimal performance.

Case Study 108: Ovens / Dryers Industry Sector: Burner Management • Conveyor Dryer

New Technology Applied:

  • Allen Bradley CompactLogix
  • Allen Bradley PanelView Plus HMI

Project Description:
Staneco Corporation designed a PLC panel with burner and motor controls for an industrial dryer. The drying process consisted of several stages which were heated by natural gas burners. Each stage had exhaust and combustion blowers which were started automatically by the PLC. The burner ignition was controlled by Honeywell flame relays. The material was carried through the dryer by a conveyor with VFD speed control. The temperature of the dryer stages was controlled by PID control loops in the PLC.

Project Outcome:
The ability to monitor many variables and store product recipes allowed for greater quality control and increased throughput.

Case Study 102: Stack Emission Control Industry Sector: Burner Management • Regenerative Thermal Oxidizers

New Technology Applied:

  • Allen Bradley CompactLogix
  • Allen Bradley PanelView Plus HMI

Project Description:
Staneco designed controls for two thermal oxidizers used at a corn-to-ethanol plant to remove organic chemicals from discharged air. The oxidizers consisted of multiple gas burners which heated combustion chambers containing ceramic pellets. When the process gas is passed through the pellets, the organic chemicals are oxidized, neutralizing them. In order to prevent overheating of the ceramic pellets, a series of dampers were switched based on either time or chamber temperature. As the chambers were switched, some gas escaped unprocessed. To remove these gases, a purge operation was included to re-circulate the untreated gasses. The motors were controlled over Devicenet which included two VFDs. Temperatures and operation of the valves are monitored and alarmed. Data was made available to the plant DCS system.

Project Outcome:
System met and exceeded the required emission acceptable limits. The process also helped minimize fuel consumption.

Case Study 121: Ovens / Dryers
Industry Sector: Burner Management • Ceramic Sintering Furnace

New Technology Applied:

  • Allen Bradley CompactLogix
  • Rockwell RSView32 SCADA System

Project Description:
Staneco Corporation designed a sintering oven to produce special purpose ceramics. The process was temperature and time dependent. There were numerous recipes for the different ceramic products produced. The temperature of the furnace was ramped up over a predetermined time to a selected temperature. At various temperatures different gasses were introduced into the process. The flow rate had to be controlled. When the maximum temperature was reached, it was held for a selected time. The temperature was then ramped down once again controlling the gas flows. Since one of the gasses was hydrogen, special interlocking and monitoring had to be used to prevent dangerous situations. The gas flows and temperature over time were logged and put into an Excel file for record keeping and examination. The cycle typically lasted from 12 to 16 hours.

Project Outcome:
Client praised the flexibility of the new system and its enhanced data collection abilities resulting in improved quality control.

Conveying Case Studies

Case Study 103: Bulk Industry Sector: Conveying • Scarfing / Crusher Conveyor System

Technology Replaced:

  • Antiquated Relay Panel

New Technology Applied:

  • Allen Bradley MicroLogix
  • Allen Bradley Component HMI

Project Description:
Staneco Corporation designed a crusher conveyor control system to replace an existing relay panel. The system consisted of conveying material through a series of conveyors and hydraulic crushers. Crushed material was then conveyed and separated by size and conveyed to different piles. Speed of the conveyor was controlled by VFD based on operator input. Safety interlocks were applied to prevent any possibility of injury. The system was able to operate in automatic, remote and manual modes. HMI displayed alarm conditions and location of fault events.

Project Outcome:
The combination of the PLC and HMI provided a more modernized system which increased throughput and minimized downtime while meeting all safety requirements.

Case Study 106: Pneumatic Industry Sector: Conveying • Pneumatic Conveying Systems

New Technology Applied:

  • Allen Bradley ControlLogix
  • Allen Bradley PanelView Plus

Project Description:
Staneco Corporation designed controls for multiple baghouse systems and hydrated lime injection systems used at multiple coal-fired power plants. The hydrated lime system had multi-point injection points and was used with fluid bed boilers. Hydrated lime is a proven alkaline reagent used to remove SO3 from the flue gas. Both pressurized and vacuum conveying was implemented. Blower motors, feeders, and rotary airlocks were controlled and monitored. Alarm conditions were monitored and control interlocks utilized allowing the system to operate safely.

Project Outcome:
Systems provided an effective and cost-efficient way to reduce emissions from the fluid bed boilers. The use of control interlocks and alarm monitoring kept the systems operating safe and increased the equipment’s performance.

Case Study 108: Manufacturing Industry Sector: Conveying • Conveyor Dryer

New Technology Applied:

  • Allen Bradley CompactLogix
  • Allen Bradley PanelView Plus HMI

Project Description Applied:
Staneco Corporation designed a PLC panel with burner and motor controls for an industrial dryer. The drying process consisted of several stages which were heated by natural gas burners. Each stage had exhaust and combustion blowers which were started automatically by the PLC. The burner ignition was controlled by Honeywell flame relays. The material was carried through the dryer by a conveyor with VFD speed control. The temperature of the dryer stages was controlled by PID control loops in the PLC.

Project Outcome:
The ability to monitor many variables and store product recipes allowed for greater quality control and increased throughput.

Case Study 113: Material Handling Industry Sector: Conveying • Material Handling System

New Technology Applied:

  • Allen Bradley ControlLogix
  • Allen Bradley PanelView Plus HMIs

Project Description:
Staneco Corporation designed a system to deliver 400 to 1600 pound rolls of paper to printing presses using an in-floor chain conveyor. The system consisted of carts holding rolls of newspapers that traveled through the press room until a press operator needed a roll of paper; at which time the operator pressed a button diverting the new roll to the press. At the press the roll was removed, the empty cart detected and sent back to an area where it could be refilled. Filled carts were automatically merged back onto the main line. Special carts were used to remove waste such as the roll covering and empty spools. Full waste carts were diverted to the waste area, emptied, and automatically merged back to the main line. The critical functions included controlling the cart stops at the merge area and implementing a shutdown if a collision was about to occur at the merge point.

Project Outcome:
The implementation of the system reduced cart collisions thereby increasing operational safety and allowing quicker reloading of the presses.

Energy Case Studies

Case Study 122: LNG Conversion Industry Sector: Energy • Vaporizer Control System

Process or Machine Automated:

  • Submerged Combustion Vaporizer Control Systems

New Technology Applied:

  • GE Fanuc 90-30 series PLC
  • GE QuickPanel HMI
  • Wonderware InTouch SCADA

Project Description:
Staneco Corporation designed controls for multiple liquefied natural gas vaporizers for use in a re-gasification process at a peak shaving facility. Each vaporizer contained a large burner that heated a water bath for the evaporation process. Two PLC systems were utilized for control of each vaporizer; one system for burner management as required per the NFPA and one system for other process controls. All units had automatic ignition and bath temperature control. In addition to the gas control required to operate under normal conditions, interlocks were added to safely handle alarm conditions. Each control system provided feedback to the plant DCS.

Project Outcome:
The addition of these peak shaving units enabled the plant to meet the critical requirements of peak consumption periods. Operators praised the ease of use provided by the control system and the ability to make adjustments to ensure optimal performance.

Case Study 102: Ethanol Plants Industry Sector: Energy • Regenerative Thermal Oxidizers

New Technology Applied:

  • Allen Bradley CompactLogix
  • Allen Bradley PanelView Plus HMI

Project Description:
Staneco designed controls for two thermal oxidizers used at a corn-to-ethanol plant to remove organic chemicals from discharged air. The oxidizers consisted of multiple gas burners which heated combustion chambers containing ceramic pellets. When the process gas is passed through the pellets, the organic chemicals are oxidized, neutralizing them. In order to prevent overheating of the ceramic pellets, a series of dampers were switched based on either time or chamber temperature. As the chambers were switched, some gas escaped unprocessed. To remove these gases, a purge operation was included to re-circulate the untreated gasses. The motors were controlled over Devicenet which included two VFDs. Temperatures and operation of the valves are monitored and alarmed. Data was made available to the plant DCS system.

Project Outcome:
System met and exceeded the required emission acceptable limits. The process also helped minimize fuel consumption.